A ug 1 99 7 NONHYPERBOLIC DEHN FILLINGS ON HYPERBOLIC 3 - MANIFOLDS Mario
نویسندگان
چکیده
In this paper we will give three infinite families of examples of nonhyperbolic Dehn fillings on hyperbolic manifolds. A manifold in the first family admits two Dehn fillings of distance two apart, one of which is toroidal and annular, and the other is reducible and ∂-reducible. A manifold in the second family has boundary consisting of two tori, and admits two reducible Dehn fillings. A manifold in the third family admits a toroidal filling and a reducible filling with distance 3 apart. These examples establish the virtual bounds for distances between certain types of nonhyperbolic Dehn fillings.
منابع مشابه
On Hyperbolic 3-manifolds Realizing the Maximal Distance between Toroidal Dehn Fillings
For a hyperbolic 3-manifold M with a torus boundary component, all but finitely many Dehn fillings on the torus component yield hyperbolic 3manifolds. In this paper, we will focus on the situation where M has two exceptional Dehn fillings, both of which yield toroidal manifolds. For such situation, Gordon gave an upper bound for the distance between two slopes of Dehn fillings. In particular, i...
متن کاملDehn filling of cusped hyperbolic 3-manifolds with geodesic boundary
We define for each g > 2 and k > 0 a set Mg,k of orientable hyperbolic 3manifolds with k toric cusps and a connected totally geodesic boundary of genus g. Manifolds in Mg,k have Matveev complexity g+k and Heegaard genus g+1, and their homology, volume, and Turaev-Viro invariants depend only on g and k. In addition, they do not contain closed essential surfaces. The cardinality of Mg,k for a fix...
متن کاملToroidal Dehn fillings on hyperbolic 3-manifolds
We determine all hyperbolic 3-manifolds M admitting two toroidal Dehn fillings at distance 4 or 5. We show that if M is a hyperbolic 3manifold with a torus boundary component T0, and r, s are two slopes on T0 with ∆(r, s) = 4 or 5 such that M(r) and M(s) both contain an essential torus, then M is either one of 14 specific manifolds Mi, or obtained from M1, M2, M3 or M14 by attaching a solid tor...
متن کاملBounds on Exceptional Dehn Filling Ii
We show that there are at most finitely many one cusped orientable hyperbolic 3-manifolds which have more than eight non-hyperbolic Dehn fillings. Moreover, we show that determining these finitely many manifolds is decidable.
متن کاملDehn Fillings of Knot Manifolds Containing Essential Once-punctured Tori
In this paper we study exceptional Dehn fillings on hyperbolic knot manifolds which contain an essential once-punctured torus. Let M be such a knot manifold and let β be the boundary slope of such an essential once-punctured torus. We prove that if Dehn filling M with slope α produces a Seifert fibred manifold, then ∆(α, β) ≤ 5. Furthermore we classify the triples (M ;α, β) when ∆(α, β) ≥ 4. Mo...
متن کامل